Unità Didattica N°24 Teoremi ed operazioni sui limiti

- 1) Limite del valore assoluto di una funzione
- 2) Teorema dell'unicità del limite
- 3) Teorema della permanenza del segno
- 4) Teorema del confronto fra limiti
- 5) Limite della somma.
- 6) Limite della differenza
- 7) Limite del prodotto
- 8) Limite del reciproco di una funzione
- 9) Limite del quoziente
- 10) Alcuni limiti notevoli: $\lim_{x\to\infty} P(x)$ $\lim_{x\to\infty} \frac{N(x)}{D(x)}$.

Limite del valore assoluto di una funzione

Teorema: Se f(x) è una funzione che tende ad $\ell \in R$ per $x \to x_o$, allora |f(x)| converge a $|\ell|$ per $x \to x_o$, cioè il limite del valore assoluto di una funzione è uguale al valore assoluto del limite. $\lim_{x \to x} f(x) = \ell \implies \lim_{x \to x} |f(x)| = |\ell|$ [1]

Il teorema non è invertibile, cioè: $\lim_{x \to x_o} |f(x)| = |\ell|$ non implica $\lim_{x \to x_o} f(x) = \ell$

Il teorema è **invertibile** solo se $\ell = 0$, in questo caso abbiamo:

$$\lim_{x \to x_0} f(x) = 0 \iff \lim_{x \to x_0} |f(x)| = 0$$

Teorema dell'unicità del limite

Se una funzione f(x), per $x \rightarrow x_o$, ammette limite ℓ , esso è unico.

Dimostrazione: Dimostriamo questo teorema per assurdo, cioè supponiamo che si abbia contemporaneamente: $\lim_{x \to x_o} f(x) = \ell$, $\lim_{x \to x_o} f(x) = \ell_1 \neq \ell$

$$\lim_{x \to x} f(x) = \ell \quad \Rightarrow \quad \left| f(x) - \ell \right| < \varepsilon \qquad \forall \, x \in I_1(x_o) - \left\{ x_o \right\}$$
 [1]

$$\lim_{x \to x_o} f(x) = \ell_1 \implies |f(x) - \ell_1| < \varepsilon \quad \forall x \in I_2(x_o) - \{x_o\}$$
 [2]

La [2] può essere scritta anche nella seguente maniera: $\left|\ell_1 - f(x)\right| < \varepsilon \quad \forall x \in I_2(x_o) - \{x_o\}$ [3]

Le [1] e [2] sono verificate contemporaneamente

$$\forall x \in I(x_o) - \{x_o\} = I_1(x_o) \cap I_2(x_o) - \{x_o\}$$

Possiamo scrivere: $\begin{cases} -\varepsilon < f(x) - \ell < \varepsilon \\ -\varepsilon < \ell_1 - f(x) < \varepsilon \end{cases} \forall x \in I(x_o) - \{x_o\}$

Sommando membro a membro otteniamo: $-2\varepsilon < \ell_1 - \ell < 2\varepsilon$ cioè: $|\ell_1 - \ell| < 2\varepsilon$

Questa disuguaglianza è assurda in quanto la quantità costante $|\ell_1 - \ell|$ non può essere minore della quantità 2ε positiva, variabile e piccola a piacere.

L'assurdo si toglie ammettendo che la funzione f(x) ammette nel punto x_o un limite unico.

Teorema della permanenza del segno

Se per $x \to x_o$ la funzione f(x) tende al limite finito ℓ non nullo, allora esiste almeno un intorno $I(x_o)$ del punto x_o nei cui punti x, escluso al più il punto x_o , la funzione f(x) assume lo stesso segno di ℓ , cioè sono entrambi positivi oppure entrambi negativi.

$$\text{Hp: } \lim_{x \to x} f(x) = \ell \neq 0 \quad \text{ Th: } \exists \ I(x_o) : \ell \cdot f(x) > 0 \quad \forall \ x \in I(x_o) - \{x_o\}$$

Dimostrazione

Scelto il numero positivo $\varepsilon = |\ell|$ abbiamo:

- $\ell > 0 \implies |\ell| = \ell$ e quindi la [1] diventa : $0 < f(x) < 2\ell \quad \forall x \in I(x_o) \{x_o\}$ cioè : $f(x) > 0 \quad \forall x \in I(x_o) - \{x_o\}$
- $\ell < 0 \implies |\ell| = -\ell$ e quindi la [1] diventa : $\ell + \ell < f(x) < \ell \ell$ $\forall x \in I(x_o) \{x_o\}$ $2\ell < f(x) < 0 \quad \forall x \in I(x_o) - \{x_o\}$ cioè : $f(x) < 0 \quad \forall x \in I(x_o) - \{x_o\}$

Teorema inverso della permanenza del segno

Se esiste $\lim_{x \to x_o} f(x) = \ell$, se risulta f(x) > 0 [f(x) < 0] in un opportuno intorno del punto x_o allora è $\ell \ge 0$ [$\ell \le 0$]

Corollario

Se per $x \to x_o$ risulta quanto segue: f(x) < g(x), $\underset{x \to x_o}{\text{Lim}} f(x) = \ell_1$, $\underset{x \to x_o}{\text{Lim}} g(x) = \ell_2$ allora si può dimostrare che vale la seguente relazione: $\ell_1 \le \ell_2$

Teorema del confronto fra limiti

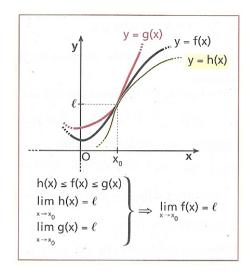
Siano f(x), h(x), g(x) tre funzioni definite nello stesso intervallo. Se risulta:

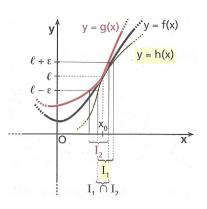
1)
$$f(x) \le h(x) \le g(x)$$
 $\forall x \in I(x_o) - \{x_o\}$

2)
$$\lim_{x \to x_o} f(x) = \lim_{x \to x_o} g(x) = \ell$$

allora risulta anche: $\lim_{x \to x_0} h(x) = \ell$

Unità Didattica N°24 Operazioni sui limiti





Poiché la funzione f viene "costretta" dalle funzioni h e g, il teorema viene detto teorema dei due carabinieri.

Dimostrazione: $\lim_{x \to x_o} f(x) = \ell \implies \ell - \varepsilon < f(x) < \ell + \varepsilon \quad \forall x \in I_1(x_o) - \{x_o\}$

$$\lim_{x \to x_o} g(x) = \ell \Rightarrow \ell - \varepsilon < g(x) < \ell + \varepsilon \quad \forall x \in I_2(x_o) - \{x_o\}$$

Allora, detto $I(x_o) = I_1(x_o) \cap I_2(x_o)$, possiamo scrivere:

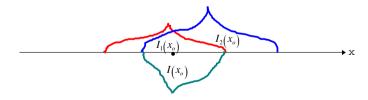
$$\ell - \varepsilon < f(x) \le h(x) \le g(x) < \ell + \varepsilon \quad \forall x \in I(x_o) - \{x_o\}$$

ed affermare che: $\lim_{x \to x} h(x) = \ell$

Infatti abbiamo dimostrato che in corrispondenza di un certo $\varepsilon > 0$, fissato ad arbitrio, esiste un intorno $I(x_o)$, per ogni x del quale, diverso da x_o , risulta: $\ell - \varepsilon < h(x) < \ell + \varepsilon$ cioè:

 $|h(x) - \ell| < \varepsilon$. In base alla definizione di limite questo significa che: $\lim_{x \to x_0} h(x) = \ell$.

Il teorema continua a sussistere anche quando $\ell = \pm \infty$.



Limite della somma

Teorema: Il limite della somma di un numero finito di funzioni è uguale alla somma dei limiti delle singole funzioni. Nel caso di due funzioni abbiamo:

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = \ell_1$$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} g(x) = \ell_2$$

$$\Rightarrow \lim_{\substack{x \to x_0 \\ x \to x_0}} [f(x) + g(x)] = \ell_1 + \ell_2$$

$$\lim_{x \to x_o} f(x) = \ell_1 \implies \forall \varepsilon > 0 \quad |f(x) - \ell_1| < \frac{\varepsilon}{2} \quad \forall x \in I_1(x_o) - \{x_o\}$$
 [2]

$$\lim_{x \to x_o} g(x) = \ell_2 \implies \forall \varepsilon > 0 \quad |g(x) - \ell_2| < \frac{\varepsilon}{2} \quad \forall x \in I_2(x_o) - \{x_o\}$$
 [3]

Le [2] e [3] valgono contemporaneamente nell'intorno $I(x_o) = I_1(x_o) \cap I_2(x_o) - \{x_o\}$ sicché , sommando membro a membro , otteniamo :

$$|f(x) - \ell_1| + |g(x) - \ell_2| < \varepsilon \quad \forall x \in I(x_o) - \{x_o\}$$
 [4]

Ricordando che $|A + B| \le |A| + |B|$ possiamo scrivere la [4] nella seguente maniera:

$$\forall \varepsilon > 0 \ \left| f(x) + g(x) - (\ell_1 + \ell_2) \right| < \varepsilon \ \forall x \in I(x_o) - \{x_o\} \ \Rightarrow \lim_{x \to x} \left[f(x) + g(x) \right] = \ell_1 + \ell_2$$

• Il teorema non è invertibile.

Osservazione: Il teorema [1] è stato dimostrato nell'ipotesi che ℓ_1 ed ℓ_2 siano numeri finiti. In caso contrario valgono le seguenti considerazioni:

ℓ_1	ℓ_2	$\ell_1 + \ell_2$
+∞	ℓ_2	+∞
ℓ_1	+∞	+∞
$-\infty$	ℓ_2	- ∞
ℓ_1	$-\infty$	- ∞
+∞	$-\infty$	$+\infty$ $-\infty$
$-\infty$	+∞	$+\infty$ $-\infty$

Il teorema [1] dà luogo alla forma indeterminata $+\infty$ $-\infty$ che va eliminata, se possibile, con opportuni accorgimenti che saranno esposti in seguito.

Limite della differenza

Teorema: Il limite della differenza di due funzioni è uguale alla differenza dei limiti delle funzioni date.

$$\lim_{\substack{x \to x_o \\ x \to x_o}} f(x) = \ell_1 \\ \lim_{\substack{x \to x_o \\ x \to x_o}} g(x) = \ell_2$$
 \Rightarrow $\lim_{\substack{x \to x_o \\ x \to x_o}} [\mathbf{f}(\mathbf{x}) - \mathbf{g}(\mathbf{x})] = \ell_1 - \ell_2$

Tenendo presente le considerazioni del paragrafo precedente e che $|A - B| \le |A| + |B|$ possiamo scrivere: $\left| \left[f(x) - \ell_1 \right] - \left[g(x) - \ell_2 \right] \right| \le \left| f(x) - \ell_1 \right| + \left| g(x) - \ell_2 \right| \quad \forall \, x \in I(x_o) - \{x_o\}$

Unità Didattica N°24 Operazioni sui limiti

Questo vuol dire che: $\lim_{x \to x_0} [f(x) - g(x)] = \ell_1 - \ell_2$ • Il teorema non è invertibile.

Osservazione: Valgono le stesse considerazioni fatte per il teorema precedente, cioè il limite della differenza di due funzioni può condurre alla forma indeterminata $+\infty$ $-\infty$.

Limite della potenza ennesima di una funzione

Il limite della potenza di una funzione è uguale alla potenza del limite della funzione stessa, cioè:

$$\lim_{x \to x_o} f(x) = \ell \quad \Rightarrow \quad \lim_{x \to x_o} \left[f(x) \right]^n = \ell^n$$

Limite della radice ennesima di una funzione

Il limite della radice n-esima di una funzione è uguale alla radice n-esima del limite della funzione

stessa, cioè:
$$\lim_{x \to x_o} f(x) = \ell \implies \lim_{x \to x_o} \sqrt[n]{f(x)} = \sqrt[n]{\ell}$$

Limite del prodotto

Teorema: Il limite del prodotto di un numero finito di funzioni è uguale al prodotto dei limiti

delle singole funzioni.
$$\begin{vmatrix} \lim_{x \to x_o} f(x) = \ell_1 \\ \lim_{x \to x_o} g(x) = \ell_2 \end{vmatrix} \Rightarrow \lim_{x \to x_o} f(x)g(x) = \ell_1 \cdot \ell_2$$

ℓ_1	ℓ_2	$\ell_1\ell_2$
ℓ_1	8	8
∞	ℓ_2	8
$\ell_1 > 0$	+∞	+∞
+∞	$\ell_2 > 0$	$+\infty$
ℓ_1 <0	+∞	$-\infty$
+∞	ℓ_2 <0	$-\infty$
+∞	+∞	+∞
-∞	ℓ ₂ <0	+∞
+∞	-∞	$-\infty$
$-\infty$	8	-8
0	8	$0 \cdot \infty$
∞	0	$\infty \cdot 0$

Unità Didattica N°24 Operazioni sui limiti

Negli ultimi due casi il limite del prodotto delle due funzioni si presenta nella forma indeterminata $0.\infty$ e quindi, per il momento, non possiamo stabilire se esso è finito, infinito o non esiste.

Corollario: Se g(x)=k=costante, allora il limite precedente diventa:

$$\lim_{x \to x_0} k \cdot f(x) = k \cdot \lim_{x \to x_0} f(x) = k \cdot \ell_1$$

cioè un fattore costante può essere portato fuori dal simbolo di limite.

Limite del reciproco di una funzione

Il limite del reciproco di una funzione è uguale al reciproco del limite della funzione stessa,

nell'ipotesi che tale limite sia diverso da zero.
$$\lim_{x \to x_o} f(x) = \ell \neq 0 \implies \lim_{\mathbf{x} \to \mathbf{x}_o} \frac{1}{\mathbf{f}(\mathbf{x})} = \frac{1}{\ell}$$

Il teorema non è invertibile.

Corollario: Si può facilmente verificare che:

$$\lim_{x \to x_o} f(x) = 0 \iff \lim_{x \to x_o} \frac{1}{f(x)} = \infty \qquad , \qquad \lim_{x \to x_o} f(x) = \infty \iff \lim_{x \to x_o} \frac{1}{f(x)} = 0$$

Limite del quoziente di due funzioni

Teorema: Il limite del quoziente di due funzioni è uguale al quoziente dei limiti del dividendo e del divisore nell'ipotesi in cui il divisore è diverso da zero, cioè:

$$\lim_{\substack{x \to x_o \\ x \to x_o}} f(x) = \ell_1$$

$$\lim_{\substack{x \to x_o \\ x \to x_o}} g(x) = \ell_2$$

$$\Rightarrow \lim_{\substack{x \to x_o \\ x \to x_o}} \frac{f(x)}{g(x)} = \frac{\ell_1}{\ell_2}$$

ℓ_1	ℓ_2	$rac{\ell_1}{\ell_2}$
∞	ℓ_2	∞
ℓ_1	8	0
ℓ_1	0	∞
0	0	$\frac{0}{0}$
∞	8	$\frac{\infty}{\infty}$
∞	0	$\frac{\infty}{0} = \infty \cdot \frac{1}{0} = \infty \cdot \infty = \infty$
0	8	$\frac{0}{\infty} = 0 \cdot \frac{1}{\infty} = 0 \cdot 0 = 0$

Osservazione: Le forme $+\infty$ $-\infty$, $0\cdot\infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$ sono dette **forme indeterminate**. La loro eliminazione avviene mediante l'applicazione di particolari accorgimenti o ricorrendo ai due teoremi di De L'Hospital.

Le forme $\frac{\infty}{0}$ e $\frac{0}{\infty}$ non sono indeterminate in quanto risulta:

$$\frac{\infty}{0} = \infty \cdot \frac{1}{0} = \infty \cdot \infty = \infty \ , \ \frac{0}{\infty} = 0 \cdot \frac{1}{\infty} = 0 \cdot 0 = 0 \ , \ o^{+\infty} = 0 \ , \ o^{-\infty} = \frac{1}{0^{+\infty}} = 0$$

Esistono anche le tre seguenti forme indeterminate: 1^{∞} , 0^{0} , ∞^{0}

Non sono forme indeterminate:

• $(+\infty)^{+\infty}$ che tende a $+\infty$ • $(+\infty)^{-\infty}$ che tende a zero • $0^{+\infty}$ che tende a zero

Alcuni limiti notevoli

Sia $P(x) = a_o x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$ un polinomio di grado n nella variabile x, con $n \in \mathbb{N}$, $a_o, a_1, \dots, a_n \in \mathbb{R}$. Vogliamo dimostrare che : $\lim_{x \to \infty} P(x) = a_o \cdot \lim_{x \to \infty} x^n = \infty$

$$\lim_{x \to \infty} P(x) = \lim_{x \to \infty} x^n \left(a_o + \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_{n-1}}{x_{n-1}} + \frac{a_n}{x^n} \right) = a_o \cdot \lim_{x \to \infty} x^n = \infty$$

In particolare abbiamo:

$$\lim_{x \to +\infty} P(x) = \begin{cases} +\infty & \text{se } a_o > 0 \\ -\infty & \text{se } a_o < 0 \end{cases} \qquad \lim_{x \to -\infty} P(x) = \begin{cases} +\infty & \text{se } \begin{cases} a_o > 0 \text{ ed } n \text{ pari} \\ a_o < 0 \text{ ed } n \text{ dispari} \end{cases} \\ -\infty & \text{se } \begin{cases} a_o > 0 \text{ ed } n \text{ pari} \\ a_o > 0 \text{ ed } n \text{ dispari} \end{cases}$$

$$\lim_{x \to +\infty} \left(-3x^3 + 2x + 5 \right) = \lim_{x \to +\infty} \left(-3x^3 \right) = -3 \cdot \lim_{x \to +\infty} x^3 = -\infty$$

Siano
$$N(x) = a_o x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$$
$$D(x) = b_o x^m + b_1 x^{m-1} + b_2 x^{m-2} + \dots + b_{m-1} x + b_m$$

due polinomi nella variabile x, rispettivamente di grado \mathbf{n} ed \mathbf{m} (con n maggiore, uguale, minore di \mathbf{m}).

Vogliamo dimostrare che:

$$\lim_{x \to \infty} \frac{N(x)}{D(x)} = \frac{a_o}{b_o} \cdot \lim_{x \to \infty} x^{n-m} = \begin{cases} \infty & \text{se } n > m \\ \frac{a_o}{b_o} & \text{se } n = m \\ 0 & \text{se } n < m \end{cases}$$

$$\lim_{\mathbf{x}\to\infty}\frac{\mathbf{N}(\mathbf{x})}{\mathbf{D}(\mathbf{x})} = \lim_{\substack{\mathbf{x}\to\infty\\\mathbf{y}\to\infty\\\mathbf{y}\to\infty}}\mathbf{N}(\mathbf{x}) = \lim_{\substack{\mathbf{x}\to\infty\\\mathbf{y}\to\infty\\\mathbf{y}\to\infty\\\mathbf{y}\to\infty}}\mathbf{D}(\mathbf{x}) = \lim_{\substack{\mathbf{x}\to\infty\\\mathbf{y}\to\infty\\\mathbf{y}\to\infty\\\mathbf{y}\to\infty}}\mathbf{D}_{\mathbf{0}}\mathbf{x}^{\mathbf{n}} = \frac{\mathbf{a}_{\mathbf{0}}}{\mathbf{b}_{\mathbf{0}}} \cdot \lim_{\mathbf{x}\to\infty}\frac{\mathbf{x}^{\mathbf{n}}}{\mathbf{x}^{\mathbf{m}}} = \frac{\mathbf{a}_{\mathbf{0}}}{\mathbf{b}_{\mathbf{0}}} \cdot \lim_{\mathbf{x}\to\infty}\mathbf{x}^{\mathbf{n}-\mathbf{m}}$$

$$\lim_{x \to -\infty} \frac{-5x^4 + 2x - 3}{2x + 3} = \lim_{x \to -\infty} \frac{-5x^4}{2x} = -\frac{5}{2} \cdot \lim_{x \to -\infty} x^3 = +\infty$$

$$\lim_{x \to -\infty} \frac{2x^3 + 2x - 5}{-4x^3 + 2x^2 + 7} = \lim_{x \to -\infty} \frac{2x^3}{-4x^3} = -\frac{2}{4} = -\frac{1}{2}$$

$$\lim_{x \to -\infty} \frac{-5x^4}{7x^5} \frac{-5x^4 + 2x - 3}{7x^5 + 3x^2 + 2} = \lim_{x \to -\infty} \frac{-5x^4}{7x^5} = \frac{5}{7} \cdot \lim_{x \to -\infty} \frac{1}{x} = \frac{5}{7} \cdot 0 = 0$$