Unità Didattica N° 25

Le funzioni continue

- 01) Funzioni continue
- 02) Punti di discontinuità per una funzione
- 03) Proprietà fondamentali delle funzioni continue
- 04) Limiti fondamentali
- 05) Calcolo di limiti che si presentano sotto forma indeterminata

Funzioni continue

Una funzione f(x) si dice Continua in un punto $x_o \in [a,b]$ quando risulta:

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_0)$$

Perché una funzione f(x) sia continua in un punto \mathbf{x}_{o} si debbono verificare tre circostanze:

- 1) deve esistere finito il numero $f(x_0)$ 2) deve esistere finito il $\lim_{x\to x} f(x)$
- 3) questo limite deve essere uguale al valore assunto dalla funzione nel punto x_0

La [1] è detta condizione di continuità per la funzione f(x) nel punto \mathbf{x}_0 .

• Ponendo $x = x_o + h$ ed osservando che $x \to x_o \Leftrightarrow h \to 0$, la [1] assume la seguente forma:

$$\lim_{x \to x_o} f(x_o + h) = f(x_o)$$
 [2]

La relazione [2] esprime, in maniera solo formalmente diversa, che la funzione f(x) è continua nel punto \mathbf{x}_0 .

Quindi anche la [2] è detta condizione di continuità per la funzione f(x) nel punto \mathbf{x}_0 .

• La funzione f(x) è **continua** nel punto x_0 dalla **destra** (sinistra) se risulta :

$$\lim_{x \to x_o^+} f(x) = f(x_o)$$
 oppure $\lim_{h \to o^+} f(x_o + h) = f(x_o)$

[
$$\lim_{x \to x_o^-} f(x) = f(x_o)$$
 oppure $\lim_{h \to o^-} f(x_o + h) = f(x_o)$]

Una funzione è **continua** in \mathbf{x}_0 se, e solo se, essa è ivi continua sia dalla sinistra che dalla destra.

• La funzione f(x) è **continua** nell'intervallo [a,b] se è **continua** in tutti i punti di tale intervallo. Una funzione f(x) è **generalmente continua** in un intervallo [a,b] se è continua in tutti i punti di [a,b] tranne che in un numero finito di punti di tale intervallo.

La funzione f(x) = tg x è generalmente continua nell'intervallo $[-2\pi, 4\pi]$.

• Poiché la funzione f(x) = x è continua $\forall x \in R$, possiamo scrivere: $\lim_{x \to x_o} x = x_o$.

Questo ci consente di scrivere la [1] nella seguente maniera: $\lim_{x \to x_o} f(x) = f(x_o) = f\left(\lim_{x \to x_o} x\right)$ [4]

Pertanto, dal punto di vista formale, dire che la funzione f(x) è **continua** in \mathbf{x}_{o} , significa affermare che è lecito scambiare il simbolo funzionale f col simbolo di **Limite** Cosi , ad esempio , è lecito scrivere :

$$\underbrace{\underset{x \to x_{o}}{\text{Lim}} \ln f\left(x\right)} = \ln \underbrace{\underset{x \to x_{o}}{\text{Lim}} f\left(x\right)} \qquad \underbrace{\underset{x \to x_{o}}{\text{Lim}} a^{f(x)}} = a^{\underbrace{\underset{x \to x_{o}}{\text{Lim}} f(x)}} \quad \text{con} \quad a \, > \, 0$$

Limiti e continuità delle funzioni composte

Le funzioni y = f(z) e z = g(x) definiscono la funzione composta o funzione di funzione y = f(z) = f[g(x)] = F(x)

TFORFMA

Se la funzione z = g(x) ammette, per $x \rightarrow x_o$, un limite finito ℓ e se f(z) è **continua** per $z = \ell$,

allora risulta:
$$\lim_{x \to x_0} f[g(x)] = f\left[\lim_{x \to x_0} g(x)\right] = f(\ell)$$

In particolare, se $\lim_{x \to x_0} f(x) = \ell$ con ℓ numero finito allora deduciamo che :

•
$$\lim_{x \to x_o} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to x_o} f(x)} = \sqrt[n]{\ell}$$
 • $\lim_{x \to x_o} \left[f(x) \right]^n = \left[\lim_{x \to x_o} f(x) \right]^n = \ell^n$

•
$$\lim_{x \to x_o} a^{f(x)} = a^{\lim_{x \to x_o} f(x)} = a^{\ell}$$
 • $\lim_{x \to x_o} \log_a f(x) = \log_a \left[\lim_{x \to x_o} f(x) \right] = \log_a \ell$

COROLLARIO

Se la funzione z=g(x) è continua nel punto $x=x_o$ del suo campo di definizione e la funzione y=f(z) è continua nel punto corrispondente $z=g(x_o)$, allora la funzione composta $y=f(z)=f\big[g(x)\big]=F(x)$ è anch'essa continua in tale punto $\mathbf{x}_{\mathbf{o}}$.

Punti di discontinuità per una funzione

Sia f(x) un funzione definita nell'intervallo [a,b]. Se $f(x_o)$ non esiste o se $\lim_{x\to x_o} f(x) = \ell \neq f(x_o)$, allora diciamo che la funzione f(x) è discontinua nel punto \mathbf{x}_o

Diciamo anche che $\mathbf{x}_{\mathbf{0}}$ è un punto di discontinuità o un punto singolare per la funzione f(x).

Una funzione è discontinua in un punto \mathbf{x}_{0} se si verifica una delle seguenti circostanze:

1) $f(x_o)$ non esiste 2) $f(x_o)$ esiste ma è infinito 3) $\lim_{x \to x_o} f(x)$ non esiste 4) $f(x_o)$ esiste finito ma è diverso da $\lim_{x \to x_o} f(x) = \ell$.

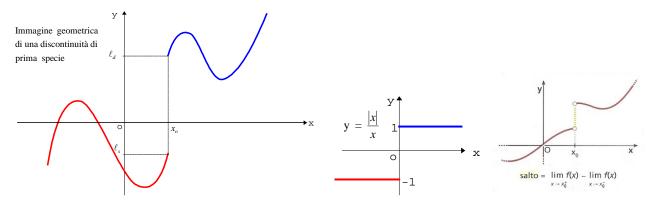
La classificazione dei punti di discontinuità dà luogo a tre tipi di punti di discontinuità:

1) Discontinuità di prima specie

Il punto \mathbf{x}_o rappresenta una discontinuità di prima specie per la funzione f(x) quando non esiste $f(x_o)$ ma esistono finiti e diversi fra loro i limiti sinistro e destro di f(x) per $x \to x_o$, cioè quando :

$$f(x_o)$$
 non esiste $\ell_s = f(x_o -) = \lim_{x \to x_o -} f(x) \neq \ell_d = f(x_o +) = \lim_{x \to x_o +} f(x)$

Il numero $\ell_d - \ell_s$ dicesi **salto** della funzione f(x) nel punto x_o .



La funzione $y = \frac{|x|}{x}$ presenta nel punto x = 0 una discontinuità di prima specie

La funzione $f(x) = \frac{\sin x}{|x|}$ presenta una discontinuità di prima specie nel punto x = 0

Infatti:

1)
$$f(0) = \frac{0}{0}$$
 non esiste 2) $f(0+) = \lim_{x \to 0+} \frac{\sin x}{|x|} = \lim_{x \to 0+} \frac{\sin x}{x} = 1$

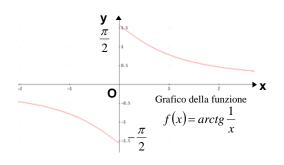
3)
$$f(0-) = \lim_{x \to 0-} \frac{\sin x}{|x|} = \lim_{x \to 0-} \frac{\sin x}{-x} = -1$$
 I limiti destro e sinistro, nel punto $x = 0$, esistono

finiti ma sono fra loro diversi.

La funzione $f(x)=\operatorname{arctg} \frac{1}{x}$ presenta una discontinuità di prima specie nel punto x=0 Infatti:

$$f(0-) = \lim_{x \to 0^{-}} \arctan \left(\frac{1}{x} = \arctan \left(-\infty\right) = -\frac{\pi}{2}\right),$$

$$f(0+) = \lim_{x \to 0^{+}} \arctan \left(\frac{1}{x} = \arctan \left(+\infty\right) = \frac{\pi}{2}\right)$$



Osservazione

Se f(x) non è definita in x_o , o se è definita in x_o ma risulta $f(x_o) \neq f(x_o) \neq f(x_o) \neq f(x_o) \neq f(x_o)$

la funzione:
$$g(x) = \begin{cases} f(x) & se \quad x \neq x_o \\ f(x_o -) & se \quad x = x_o \end{cases}$$

è continua a sinistra **di** x_o , ma non a destra di x_o .

Diciamo in questo caso che la funzione g(x) si ottiene prolungando la f(x) in x_o per continuità dalla sinistra o modificando il valore di f(x) dalla sinistra.

La funzione :
$$p(x) = \begin{cases} f(x) & se \quad x \neq x_o \\ f(x_o +) & se \quad x = x_o \end{cases}$$

è continua alla destra di x_o ma non alla sinistra di x_o .

Diciamo in questo caso che la funzione p(x) si ottiene prolungando per continuità da destra o modificando il valore di f(x) in x_o da destra.

2) Discontinuità di seconda specie

La funzione f(x) presenta nel punto \mathbf{x}_{o} una discontinuità di seconda specie quando almeno uno dei due limiti (sinistro o destro) è , nel punto \mathbf{x}_{o} , infinito oppure non esiste , cioè quando:

- 1) f(x) è infinita nel punto \mathbf{x}_0 oppure
- 2) quando non esiste almeno uno dei due seguenti limiti

$$f(x_o -) = \underset{x \to x -}{Lim} f(x), f(x_o +) = \underset{x \to x +}{Lim} f(x)$$

3) almeno uno dei due seguenti limiti $f(x_o -) = \lim_{x \to x_o -} f(x)$, $f(x_o +) = \lim_{x \to x_o +} f(x)$ vale infinito.

OSSERVAZIONE

Se $\mathbf{x}_{_{\mathbf{0}}}$ è un punto di discontinuità di seconda specie, ciò non esclude che la funzione sia continua a destra oppure a sinistra, od anche che sia prolungabile in una funzione continua a sinistra (ma non a destra), o continua a destra (ma non a sinistra).

• La funzione $f(x) = e^{\frac{1}{x}}$ presenta una discontinuità di seconda specie nel punto **x=0**.

$$f(0) = e^{\frac{1}{0}}$$
 non esiste , $\ell_s = f(0-) = \lim_{x \to 0-} e^{\frac{1}{x}} = e^{-\infty} = 0$

$$\ell_d = f(0+) = \lim_{x \to 0+} e^{\frac{1}{x}} = e^{+\infty} = +\infty$$

$$f(x) = \left(\frac{1}{2}\right)^{\frac{1}{x^2 - 9}}$$

$$f(x) = \left(\frac{1}{2}\right)^{\frac{1}{x^2 - 9}} \qquad \qquad \begin{array}{c} -3 & 3 \\ + & - & + \\ \hline f(-3 -) = \lim_{x \to -3^{-}} \left(\frac{1}{2}\right)^{\frac{1}{x^2 - 9}} = \left(\frac{1}{2}\right)^{+\infty} = 0 \end{array}$$

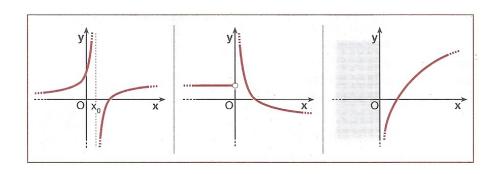
$$f(-3-) = \lim_{x \to -3-} \left(\frac{1}{2}\right)^{\frac{1}{x^2-9}} = \left(\frac{1}{2}\right)^{+\infty} = 0$$

$$f(-3+) = \lim_{x \to -3+} \left(\frac{1}{2}\right)^{\frac{1}{x^2-9}} = \left(\frac{1}{2}\right)^{-\infty} = +\infty \quad f(3-) = +\infty \quad , f(3+) = 0$$

La funzione $f(x) = \left(\frac{1}{2}\right)^{\frac{1}{x^2-9}}$ presenta nei punti $x = \pm 3$ delle **discontinuità di seconda specie**.

• $\lim_{x \to 0^+} 3^{-\frac{1}{x}} = \begin{cases} 0 \\ +\infty \end{cases}$ La funzione $f(x) = 3^{-\frac{1}{x}}$ presenta nel punto x = 0 una discontinuità

di seconda specie.



3) Discontinuità di terza specie o discontinuità eliminabile

La funzione f(x) presenta nel punto x_o una discontinuità di terza specie o discontinuità eliminabile quando si presenta una delle seguenti circostanze:

1)
$$f(x_o)$$
 non esiste , $\lim_{x \to x_o} f(x) = \ell$

2)
$$f(x_o)$$
 esiste , $f(x_o -) = f(x_o +) = \lim_{x \to x_o} f(x) = \ell \neq f(x_o)$

La discontinuità si elimina ponendo :
$$f(x_o) = \lim_{x \to x} f(x) = \ell$$

In questo caso diciamo di prolungare (o completare) per continuità la funzione f(x) anche nel punto \mathbf{x}_o . La discontinuità di terza specie è detta discontinuità eliminabile in quanto completiamo la definizione della funzione f(x) ponendo: $f(x_o) = \lim_{x \to x_o} f(x) = \ell$

In sostanza noi eliminiamo la discontinuità di terza specie nel punto $\mathbf{x}_{_{0}}$ considerando

una nuova funzione
$$g(x)$$
 così definita : $g(x) = \begin{cases} f(x) & se \ x \neq x_o \\ \ell & se \ x = x_o \end{cases}$

Cosi facendo il punto $P_o(x_o,\ell)$ appartiene al grafico della funzione f(x).

La funzione $f(x) = 2^{-\frac{1}{x^2}}$ presenta nel punto di ascissa zero una discontinuità eliminabile.

Infatti f(0) non esiste . $\lim_{x\to 0} 2^{-\frac{1}{x^2}} = 2^{-\infty} = 0$ La discontinuità si elimina ponendo f(0) = 0

Il prolungamento per continuità della funzione proposta dà luogo alla seguente nuova

funzione **continua** in tutto **R**:
$$\mathbf{g}(\mathbf{x}) = \begin{cases} 2^{\frac{1}{\mathbf{x}^2}} & \text{se } \mathbf{x} \neq \mathbf{0} \\ \mathbf{0} & \text{se } \mathbf{x} = \mathbf{0} \end{cases}$$

Altrettanto dicasi per le seguenti funzioni:

$$\frac{\sin x}{x}$$
, $\frac{\ln(1+x)}{x}$, $\frac{e^x-1}{x}$, $x \cdot \sin \frac{1}{x}$ cioè:

$$g(x) = \begin{cases} \frac{\sin x}{x} & se \ x \neq 0 \\ 1 & se \ x = 0 \end{cases}, \ g(x) = \begin{cases} \frac{\ln(1+x)}{x} & se \ x \neq 0 \\ 1 & se \ x = 0 \end{cases}, \ g(x) = \begin{cases} \frac{e^x - 1}{x} & se \ x \neq 0 \\ 1 & se \ x = 0 \end{cases}$$

$$g(x) = \begin{cases} x \cdot \sin\frac{1}{x} & se \ x \neq 0 \\ 1 & se \ x = 0 \end{cases}$$

Sintesi: Una discontinuità può essere:

- 1) di prima specie quando esistono finiti i limiti destro e sinistro e questi limiti sono fra loro diversi
- 2) di seconda specie quando almeno uno dei due limiti destro e sinistro o non esiste o è infinito
- 3) di terza specie o eliminabile quando f(x) è convergente in x_o (cioè esiste finito il $\lim_{x \to x_o} f(x) = \ell$) ma non esiste $f(x_o)$, oppure esiste $f(x_o)$ ma è diverso da ℓ .

Insieme di definizione e dominio di una funzione

• L'insieme di definizione di una funzione f è l'intervallo o l'unione di intervalli dove vogliamo studiare le proprietà della funzione.

Un punto \mathbf{x}_{o} appartenente all'insieme di definizione (I_{D}) è punto di continuità per la funzione f quando esiste finito il suo limite per \mathbf{x} tendente ad \mathbf{x}_{o} (cioè quando esistono finiti i limiti destro e sinistro e questi limiti sono fra loro uguali) e tale valore è uguale a quello assunto dalla funzione nel punto \mathbf{x}_{o} , cioè quando risulta : $\lim_{x \to x_{o}} f(x) = f(x_{o})$

- Il concetto di continuità di una funzione in un suo punto \mathbf{x}_{o} si occupa del comportamento della funzione sia in un intorno del punto \mathbf{x}_{o} che nel punto stesso, richiedendo che tali comportamenti non siano difformi.
- L'insieme dei punti di continuità (che è un sottoinsieme dell'insieme di definizione) costituisce il dominio della funzione.

$$dom f \subseteq I_D$$

Proprietà fondamentali delle funzioni continue

• Le funzioni elementari sono continue nei rispettivi domini.

Sono continue le seguenti funzioni:

1)
$$f(x) = \sin x$$
 $\forall x \in \mathbb{R}$ 2) $f(x) = \cos x$ $\forall x \in \mathbb{R}$ 3) $f(x) = a^x$ $\forall x \in \mathbb{R}$ (a>0)

4)
$$f(x) = \log_a x \quad \forall x \in \mathbb{R}^+$$
 5) $f(x) = \sqrt{x} \quad \forall x \in \mathbb{R}^+$

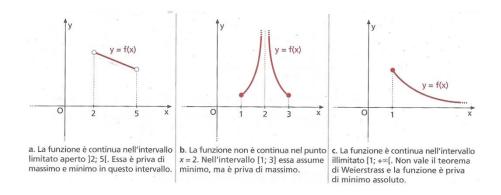
Teorema N° 1: La somma algebrica di un numero finito di funzioni continue è una funzione continua

Teorema N° 2: Il prodotto di un numero finito di funzioni continue è una funzione continua **Teorema N° 3**: Il quoziente di due funzioni continue è una funzione continua se escludiamo gli eventuali zeri del denominatore. Ne consegue che sono funzioni sempre continue tutti i polinomi, mentre sono funzioni generalmente continue le funzioni razionali fratte.

Teorema N° 4: Se una funzione f(x) è continua in un intervallo limitato e chiuso, essa è ivi limitata.

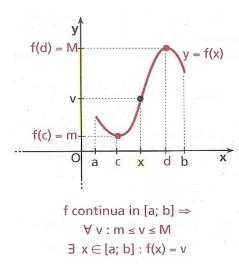
Teorema (di Weierstrass) N°5: Se una funzione f(x) è continua in un intervallo limitato e chiuso [a,b] essa ammette ivi il massimo assoluto M ed il minimo assoluto m , cioè l'intervallo limitato e chiuso [m,M] è il **codominio** di f.

Se qualcuna delle ipotesi del teorema N°5 non è verificata, il risultato non è più valido come mostrano i seguenti controesempi:



Teorema (di Bolzano) N°6 o teorema dei valori intermedi

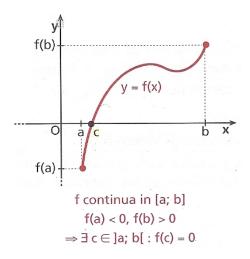
Se una funzione f(x) è continua in un intervallo limitato e chiuso [a,b] essa assume tutti i valori compresi fra il suo minimo assoluto \mathbf{m} ed il suo massimo assoluto \mathbf{M} . In particolare, una funzione f(x) continua e strettamente monotona in un intervallo limitato e chiuso [a,b] assume tutti i valori compresi tra f(a) ed f(b) quando la x descrive l'intervallo [a,b], cioè quando la x assume tutti i valori compresi tra \mathbf{a} e \mathbf{b} .



Teorema (di esistenza degli zeri) N°7: Se f(x) è una funzione continua in un intervallo limitato e chiuso [a,b], se risulta $f(a) \cdot f(b) < 0$, allora $\exists x_o \in]a,b[:f(x_o) = 0$. Se f(x) è anche strettamente crescente o strettamente decrescente in [a,b] abbiamo:

$$\exists^* x_o \in]a,b[:f(x_o) = 0$$

cioè esiste ed è unico il punto \mathbf{x}_0 interno all'intervallo [a,b] per il quale risulta $f(x_0) = 0$.



Limiti fondamentali

- In analisi matematica gli angoli e gli archi si misurano in radianti .
- Limiti notevoli e loro dimostrazione

$$\lim_{x \to 0+} x^{\alpha} = \begin{cases} 0 & \text{se } \alpha > 0 \\ 1 & \text{se } \alpha = 0 \\ + \Psi & \text{se } \alpha < 0 \end{cases} \qquad \lim_{x \to +\infty} x^{\alpha} = \begin{cases} +\infty & \text{se } \alpha > 0 \\ 1 & \text{se } \alpha = 0 \\ 0 & \text{se } \alpha < 0 \end{cases}$$

$$\lim_{x \to +\infty} \mathbf{a}^{\mathbf{x}} = \begin{cases} +\infty & \text{se a} = 1 \\ 1 & \text{se a} = 1 \\ 0 & \text{se 0} < \mathbf{a} < 1 \end{cases} \qquad \lim_{x \to +\infty} \mathbf{a}^{\mathbf{x}} = \begin{cases} 0 & \text{se a} > 1 \\ 1 & \text{se a} = 1 \\ +\infty & \text{se 0} < \mathbf{a} < 1 \end{cases}$$

$$\lim_{x \to +\infty} \sin x = 0, \quad \lim_{x \to 0} \cos x = 1, \quad \lim_{x \to 0} tg x = 0, \quad \lim_{x \to 0} \frac{1}{x} = \infty, \quad \lim_{x \to \infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \log_a x = +\infty \quad \text{se a} > 1 \qquad \lim_{x \to +\infty} \log_a x = -\infty \quad \text{se 0} < a < 1$$

$$\lim_{x \to +\infty} \log_a x = -\infty \quad \text{se a} > 1 \qquad \lim_{x \to +\infty} \log_a x = +\infty \quad \text{se 0} < a < 1$$

$$\lim_{x \to 0+} \log_a x = -\infty \quad \text{se a} > 1 \qquad \lim_{x \to 0+} \log_a x = +\infty \quad \text{se 0} < a < 1$$

$$\lim_{x \to +\infty} a^x = 0, \quad \lim_{x \to -\infty} a^x = 0 \quad \text{se a} > 1$$

$$\lim_{x \to +\infty} a^x = 0, \quad \lim_{x \to -\infty} a^x = +\infty \quad \text{se 0} < a < 1$$

$$\lim_{x \to +\infty} a^{\frac{1}{x}} = 0, \quad \lim_{x \to -\infty} a^{\frac{1}{x}} = +\infty \quad \text{se 0} < a < 1$$

$$\lim_{x \to 0+} a^{\frac{1}{x}} = 0, \quad \lim_{x \to 0-} a^{\frac{1}{x}} = +\infty \quad \text{se 0} < a < 1$$

$$\lim_{x \to 0} a^{\frac{1}{x}} = +\infty, \quad \lim_{x \to 0} a^{\frac{1}{x}} = 0 \quad \text{se a} > 1$$

$$\lim_{x \to 0} a^{\frac{1}{x}} = +\infty, \quad \lim_{x \to 0} a^{\frac{1}{x}} = 0 \quad \text{se a} > 1$$

$$\lim_{x \to 0} a^{\frac{1}{x}} = +\infty, \quad \lim_{x \to 0} a^{\frac{1}{x}} = 0 \quad \text{se a} > 1$$

• Quando la **x** esprime la misura in radianti di un arco o di un angolo risulta: $\lim_{x\to 0} \frac{\sin x}{x} = 1$

Constatato facilmente che il limite si presenta nella forma indeterminata $\frac{0}{0}$, consideriamo l'arco

 $\widehat{\mathsf{AB}}$ la cui misura in radianti è \mathbf{x} .

$$0 < x < \frac{\pi}{2} \Rightarrow \overline{EB} < \overline{AB} < \widehat{AB} < \overline{AC} + \overline{CB} \quad , \quad \overline{BC} < \overline{TC} \quad \Rightarrow \quad \overline{AC} + \overline{CB} + \overline{TC}$$

$$\overline{EB} < \widehat{AB} < \overline{AT} \quad \text{cioè} : \quad \sin x < x < tg \ x = \frac{\sin x}{\cos x}$$

Dividendo ciascun termine per $\sin x > 0$ otteniamo : $1 < \frac{x}{\sin x} < \frac{1}{\cos x}$, $\cos x < \frac{\sin x}{x} < 1$

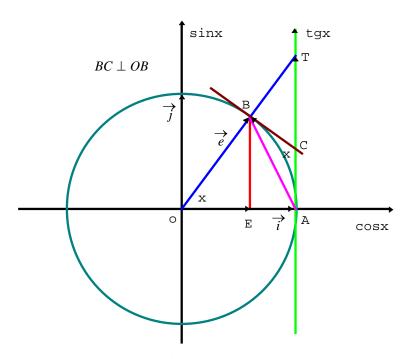
Poiché risulta: $\lim_{x\to 0+} \cos x = 1$, $\lim_{x\to 0+} 1 = 1$, è valido il teorema del confronto fra limiti e

possiamo scrivere : $\lim_{x\to 0+} \frac{\sin x}{x} = 1$

Ponendo x = -t ed osservando che $x \to 0- \Leftrightarrow t \to 0+$ possiamo scrivere :

$$\lim_{x \to 0^{-}} \frac{\sin x}{x} = \lim_{t \to 0^{+}} \frac{\sin(-t)}{-t} = \lim_{t \to 0^{+}} \frac{-\sin t}{-t} = \lim_{t \to 0^{+}} \frac{\sin t}{t} = 1$$

Abbiamo così dimostrato che: $\lim_{x\to 0} \frac{\sin x}{x} = 1$



• • Adesso dimostriamo che:

$$\lim_{x\to 0}\frac{\operatorname{tg} x}{x}=1$$

$$\lim_{x \to 0} \frac{tg x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1$$

• • Consideriamo la funzione $f(x) = \left(1 + \frac{1}{x}\right)^x$. Risulta: $dom f =]-\infty,-1[\bigcup]0,+\infty[$

Infatti deve essere:
$$\begin{cases} 1 + \frac{1}{x} > 0 & \frac{x+1}{x} > 0 & \text{per } x < -1, x > 0 \\ x \neq 0 & \end{cases}$$

Si può dimostrare che:
$$\lim_{n\to\infty} \left(1 + \frac{1}{x}\right)^n = e$$

dove \mathbf{e} rappresenta un numero irrazionale trascendente compreso tra due e tre. Un suo valore approssimato \mathbf{e} : $\mathbf{e} = 2,718$. Il numero \mathbf{e} è un numero irrazionale in quanto non può essere scritto sotto forma di frazione, è un numero trascendente in quanto non può essere radice di nessuna equazione razionale algebrica a coefficienti interi (non tutti nulli).

Questo numero ha una grandissima importanza in analisi matematica e per questo motivo il matematico Nepero lo assunse come base di un sistema di logaritmi noti sotto il nome di

logaritmi neperiani o logaritmi naturali o *logaritmi iperbolici* (in quanto intervengono nella misura dell'area di una iperbole equilatera).

Una volta si usava il simbolo **lg** oppure **log**, oggi si usa il simbolo **ln**.

I logaritmi in base 10 (simbolo usato in passato **Log** oppure **Lg**, attualmente si usa il simbolo **log** oppure **lg**) sono detti decimali o di Briggs o *volgari* in quanto usati nei calcoli della matematica elementare.

Per passare da un sistema di logaritmi all'altro basta tenere presente quanto segue :

$$y = \ln x \implies x = e^y = e^{\ln x} \implies \log x = \log e^y = y \log e = \ln x \cdot \log e$$

$$\ln x = \frac{\log x}{\log e} = 2,30258509 \cdot \log x \qquad \log x = \log e \cdot \ln x = 0,43429448 \cdot \ln x$$

• Per calcolare un valore approssimato del numero di Nepero e basta porre x=1 nello sviluppo in

serie della funzione
$$e^x$$
, cioè: $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{x!} + \frac{x^4}{4!} + \dots$

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{x!} + \frac{1}{4!} + \dots$$

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e = \frac{1}{\ln a}$$

Dimostrazione: dom
$$\frac{\log_a(1+x)}{x} =]-1,+\infty[-\{0\}]$$

Ponendo tx = 1 ed osservando che $x \rightarrow 0 \Leftrightarrow t \rightarrow \infty$ possiamo scrivere :

$$\frac{\log_a(1+x)}{x} = \frac{1}{x} \cdot \log_a(1+x) = \log_a(1+x)^{\frac{1}{x}} = \log_a\left(1+\frac{1}{t}\right)^t$$

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \lim_{t \to \infty} \log_a\left(1+\frac{1}{t}\right)^t = \log_a \lim_{t \to \infty} \left(1+\frac{1}{t}\right)^t = \log_a e$$

- • Se abbiamo $\mathbf{a} = \mathbf{e}$ il limite precedente diventa : $\lim_{\mathbf{x} \to 0} \frac{\ln(1+\mathbf{x})}{\mathbf{x}} = 1$
- $\lim_{x\to 0}\frac{a^x-1}{x}=\ln a$

Dimostrazione

Poniamo:
$$a^x - 1 = t$$
 cioè: $a^x = 1 + t$ $x \to 0 \Leftrightarrow t \to 0$
$$\ln a^x = \ln(1+t) , x \ln a = \ln(1+t) , x = \frac{1}{\ln a} \cdot \ln(1+t)$$

$$\frac{a^{x} - 1}{x} = \frac{t}{\frac{1}{\ln a} \cdot \ln(1 + t)} = \frac{\ln a}{\frac{\ln(1 + t)}{t}} \qquad \lim_{t \to 0} \frac{a^{x} - 1}{x} = \lim_{t \to 0} \frac{\ln a}{\frac{\ln(1 + t)}{t}} = \ln a$$

• • Se risulta $\mathbf{a} = \mathbf{e}$ il limite precedente diventa : $\lim_{x \to 0} \frac{\mathbf{e}^x - 1}{\mathbf{x}} = 1$

in quanto risulta : $\ln a = \ln e = 1$.

$$\lim_{x\to 0} \frac{\left(1+x\right)^k - 1}{x} = k$$

Valgono anche i seguenti limiti fondamentali:

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1 \quad \lim_{x \to 0} \frac{\arctan x}{x} = 1 \quad \lim_{x \to 0} x \frac{\frac{\pi}{2} - \arccos x}{x} = 1 \quad \lim_{x \to \infty} \left(\frac{\pi}{2} - \arctan x\right) \cdot x = 1 \quad \lim_{x \to 0} \frac{\cos x}{\frac{\pi}{2} - 1} = 1$$

Limiti riconducibili ai limiti fondamentali

$$\lim_{f(x)\to 0} \frac{\sin f(x)}{f(x)} = 1 \qquad \lim_{f(x)\to 0} \frac{tg f(x)}{f(x)} = 1 \qquad \lim_{f(x)\to 0} \left(1 + \frac{1}{f(x)}\right)^{f(x)} = e$$

$$\lim_{f(x)\to 0} \frac{\ln(1+f(x))}{f(x)} = 1 \qquad \lim_{f(x)\to 0} \frac{e^{f(x)}-1}{f(x)} = 1 \qquad \lim_{f(x)\to 0} \frac{\left(1+f(x)\right)^k-1}{f(x)} = k$$

Calcolo di due limiti che si presentano sotto forma indeterminata

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot \frac{1 + \cos x}{1 + \cos x} = \lim_{x \to 0} \frac{\sin^2 x}{x} \cdot \frac{1}{1 + \cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \sin x \cdot \frac{1}{1 + \cos x}$$

$$= 1 \cdot 0 \cdot \frac{1}{2} = 0 \qquad \text{oppure}:$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x} = \lim_{x \to 0} \frac{\sin \frac{x}{2}}{x} \cdot \sin \frac{x}{2} = 1 \cdot 0 = 0 \qquad \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \frac{1 - \cos x}{1 - \cos x} = \lim_{x \to 0} \frac{1}{1 + \cos x} \cdot \lim_{x \to 0} \frac{\sin^2 x}{x^2} = \frac{1}{2}$$

$$= \frac{1}{2} \cdot \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{\sin x}{x} = \frac{1}{2}$$

Calcolo di limiti che si presentano sotto forma indeterminata

In questo paragrafo faremo veder come , attraverso opportuni accorgimenti e tenendo presente i limiti fondamentali , è possibile calcolare alcuni limiti che si presentano in una della seguenti 4 forme indeterminate : $\frac{0}{0}$, $\frac{\infty}{\infty}$, $0\cdot\infty$, $+\infty-\infty$.

In seguito vedremo come si calcolano i limiti che si presentano in una delle tre seguenti forme indeterminate 0^0 , 1^∞ , ∞^o .

Per le funzioni derivabili è spesso possibile utilizzare un metodo generale (dovuto al matematico francese De L'Hospital) in grado di eliminare le precedenti forme indeterminate senza dovere ricercare quegli opportuni artifizi di cui si diceva all'inizio del paragrafo .

Forma indeterminata
$$\frac{0}{0}$$

$$\lim_{x \to 0} \frac{x \sin x \cos x}{1 - \cos x} = \lim_{x \to 0} \cos x \cdot \lim_{x \to 0} \frac{x \sin x}{1 - \cos x} \cdot \frac{1 + \cos x}{1 + \cos x} = 1 \cdot \lim_{x \to 0} \frac{x \sin x (1 + \cos x)}{\sin^2 x} = 1 \cdot \lim_{x \to 0} \frac{1}{\sin^2 x} \cdot (1 + \cos x) = 2$$

$$\lim_{x \to 0} \frac{1 - \cos x}{\lg^2 x} = \lim_{x \to 0} \frac{\cos^2 x \cdot (1 - \cos x)}{\sin^2 x} = \lim_{x \to 0} \frac{\cos^2 x \cdot (1 - \cos x)}{(1 - \cos x) \cdot (1 + \cos x)} = \lim_{x \to 0} \frac{\cos^2 x}{1 + \cos x} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{1 - \cos x + \sin x}{1 - \cos x - \sin x} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}}{2\sin^2 \frac{x}{2} - 2\sin \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{2\sin \frac{x}{2}\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)}{2\sin \frac{x}{2}\left(\sin \frac{x}{2} - \cos \frac{x}{2}\right)} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\sin^2 \frac{x}{2} - 2\sin^2 \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{2\sin \frac{x}{2}\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)}{2\sin \frac{x}{2}\left(\sin \frac{x}{2} - \cos \frac{x}{2}\right)} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\sin^2 \frac{x}{2} - 2\sin^2 \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{2\sin \frac{x}{2}\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)}{2\sin^2 \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\sin^2 \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\sin^2 \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\sin^2 \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\sin^2 \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\sin^2 \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\sin^2 \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\sin^2 \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\cos \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\cos \frac{x}{2}\cos \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\cos \frac{x}{2}\cos \frac{x}{2}\cos \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \frac{1 - \cos x - \sin x}{2\cos \frac{x}{2}\cos \frac{x}{$$

$$= \lim_{x \to 0} \frac{\sin \frac{x}{2} + \cos \frac{x}{2}}{\sin \frac{x}{2} - \cos \frac{x}{2}} = \mathbf{1}$$

$$\lim_{x \to 0} \frac{\sin 3x}{\log x} = \lim_{x \to 0} \frac{3\sin 3x}{3x} \cdot \frac{x}{\log x} = 3.1.1 = 3$$

$$\lim_{x \to 0} \frac{\sin 3x}{\sin 2x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{2x}{\sin 2x} \cdot \frac{3}{2} = 1 \cdot 1 \cdot \frac{3}{2} = \frac{3}{2}$$

$$\lim_{x \to 0} \frac{2\sin x + 3x\cos x}{3\sin x - 2x\cos x} = \lim_{x \to 0} \frac{\frac{2\sin x}{x\cos x} + 3}{\frac{3\sin x}{x\cos x} - 2} = \lim_{x \to 0} \frac{\frac{2tg x}{x} + 3}{\frac{3tg x}{x} - 2} = \frac{2+3}{3-2} = 5$$

$$\lim_{x \to 0} \frac{\sin x \cdot \lg x}{x^3} = \lim_{x \to 0} \frac{\sin x(1 - \cos x)}{x^3 \cdot \cos x} = \lim_{x \to 0} \frac{\sin^3 x}{x^3 \cdot \cos x \cdot (1 + \cos x)} =$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^3 \frac{1}{\cos x \cdot (1 + \cos x)} = 1 \cdot \frac{1}{1 \cdot (1 + 1)} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\cos x \cdot \cos^3 x}{\sin^2 x} = \lim_{x \to 0} \frac{\cos x(1 - \cos x)}{(1 + \cos x)(1 - \cos x)} = \lim_{x \to 0} \frac{\cos x}{1 + \cos x} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{1 \cdot \cos 2x}{\sin^2 3x} = \lim_{x \to 0} \frac{2\sin^2 x}{\sin^2 3x} = \frac{2}{9} \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \cdot \left(\frac{3x}{\sin 3x}\right)^2 = \frac{2}{9} =$$

$$\lim_{x \to 0} \frac{x^2 + \sin x}{x \cdot \sin x} = \lim_{x \to 0} \frac{x + \frac{\sin x}{\sin x}}{1 - \frac{\sin x}{x}} = \frac{1}{1 - 1} = \frac{1}{0} = \infty$$

$$\lim_{x \to 0} \frac{\sin^2 x}{1 + \cos^3 x} = \lim_{x \to 0} \frac{(1 + \cos x)(1 - \cos x)}{(1 + \cos x)(1 - \cos x)} = \lim_{x \to 0} \frac{1 - \cos x}{1 - \cos x + \cos^2 x} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{1 - \cos^3 x}{1 + \cos^3 x} = \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x + \cos^2 x)}{x \sin x \cos x} \cdot \frac{1 + \cos x}{1 + \cos x} = \lim_{x \to 0} \frac{\sin^2 x(1 + \cos x + \cos^2 x)}{x \sin x \cos x(1 + \cos x)} = \lim_{x \to 0} \frac{\sin^2 x}{x \sin x \cos x} = \lim_{x \to 0} \frac{\sin^2 x}{x \sin x \cos$$

Forma indeterminata $\frac{\infty}{\infty}$

$$\lim_{x \to \infty} \frac{\sqrt{16x^2 + 8x - 13}}{2x - 3} = \lim_{x \to \infty} \frac{|x| \cdot \sqrt{16 + \frac{8}{x} - \frac{13}{x^2}}}{|x| \cdot \left(2 - \frac{13}{x}\right)} = \frac{\pm 4}{2} = \pm 2$$

$$\lim_{\mathbf{x} \to \infty} \frac{2\mathbf{x} + 3}{\mathbf{x} + \sqrt[3]{\mathbf{x}}} = \lim_{x \to \infty} \frac{2 + \frac{3}{x}}{1 + \sqrt[3]{\frac{1}{x^2}}} = 2$$

$$\lim_{\mathbf{x}\to\infty} \frac{\sqrt{\mathbf{x}} - \sqrt{\mathbf{a}}}{\mathbf{x} - \mathbf{a}} = \lim_{x\to\infty} \frac{\sqrt{x} - \sqrt{a}}{x - a} \cdot \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{x\to\infty} \frac{x - a}{(x - a)(\sqrt{x} + \sqrt{a})} = \lim_{x\to\infty} \frac{1}{\sqrt{x} + \sqrt{a}} = 0$$

$$\lim_{x \to +\infty} \frac{2\mathbf{x} - 3\sqrt{\mathbf{x}} + \sqrt[3]{\mathbf{x}^2}}{3\sqrt{\mathbf{x}} + \sqrt[3]{\mathbf{x}} + 3\mathbf{x}} = \lim_{x \to +\infty} \frac{2 - \frac{3}{\sqrt{x}} + \frac{1}{\sqrt[3]{x}}}{\frac{3}{\sqrt{x}} + \frac{1}{\sqrt[3]{x^2}} + 3} = \frac{2 - 0 + 0}{0 + 0 + 3} = \frac{2}{3}$$

$$\lim_{x \to +\infty} \frac{2\sqrt{x} + 3\sqrt[3]{x} + 5\sqrt[6]{x}}{\sqrt{3x - 2} + \sqrt[3]{2x - 3}} = \lim_{x \to +\infty} \frac{2\sqrt{x}}{\sqrt{3x - 2}} = \text{(ho trascurato gli infiniti di ordine inferiore)} =$$

$$= \lim_{x \to +\infty} \frac{\frac{2\sqrt{x}}{\sqrt{x}}}{\frac{\sqrt{3x-2}}{\sqrt{x}}} = \lim_{x \to +\infty} \frac{2}{\sqrt{3-\frac{2}{x}}} = \frac{2}{\sqrt{3}} = \frac{2}{3}\sqrt{3}$$

Forma indeterminata $+\infty - \infty$

$$\lim_{\mathbf{x}\to +\infty} \left(\mathbf{x} - \sqrt{\mathbf{x}}\right) = \lim_{x\to +\infty} \sqrt{x} \left(x - \sqrt{x}\right) = \left(+\infty\right) \left(+\infty - 1\right) = \left(+\infty\right) \left(+\infty\right) = +\infty$$

$$\lim_{\mathbf{x}\to-\infty} \left(\sqrt{\mathbf{x}^2 - 1} + \mathbf{x} \right) = \lim_{x\to-\infty} \frac{\left(\sqrt{x^2 - 1} + x \right) \left(\sqrt{x^2 - 1} - x \right)}{\sqrt{x^2 - 1} - x} = \lim_{x\to-\infty} \frac{x^2 - 1 - x^2}{\sqrt{x^2 - 1} -$$

$$= \overline{\lim_{x \to -\infty} \frac{-1}{\sqrt{x^2 - 1} - x}} = \frac{-1}{+\infty} = 0 - \frac{1}{-1}$$

$$\lim_{\mathbf{x} \to +\infty} \left(\sqrt{\mathbf{x}^2 + \mathbf{p} \mathbf{x} + \mathbf{q}} - \mathbf{x} \right) = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + px + q} - x \right) \left(\sqrt{x^2 + px + q} + x \right)}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q}$$

$$= \lim_{x \to +\infty} \frac{x^2 + px + q - x^2}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{px + q}{\sqrt{x^2 + px + q} + x} = \lim_{x \to +\infty} \frac{x\left(p + \frac{q}{x}\right)}{x\left(\sqrt{1 + \frac{p}{x} + \frac{q}{x^2}} + 1\right)} = \frac{p}{2}$$

$$\lim_{\mathbf{x}\to+\infty} \left(\sqrt{\mathbf{x}^2 + 7\mathbf{x} - 5} - \mathbf{x} \right) = \lim_{x\to+\infty} \frac{x^2 + 7x - 5 - x^2}{\sqrt{x^2 + 7x - 5} + x} = \lim_{x\to+\infty} \frac{7 - \frac{5}{x}}{\sqrt{1 + \frac{7}{x} - \frac{5}{x^2} + 1}} = \frac{7}{1 + 1} = \frac{7}{2}$$

$$\lim_{\mathbf{x}\to+\infty} \left(\sqrt{9\mathbf{x}^2 + 1} - 3\mathbf{x} \right) = \lim_{x\to+\infty} \frac{\left(\sqrt{9x^2 + 1} - 3x \right) \left(\sqrt{9x^2 + 1} + 3x \right)}{\sqrt{9x^2 + 1} + 3x} = \lim_{x\to+\infty} \frac{9x^2 + 1 - 9x^2}{\sqrt{9x^2 + 1} + 3x} = \lim_{x\to+\infty} \frac{1}{\sqrt{9x^2 + 1} + 3x} = 0$$

$$\lim_{x \to +\infty} \left(\sqrt[4]{x^4 + 1} - x \right) = \lim_{x \to +\infty} \frac{1}{\left(\sqrt[4]{x^4 + 1} + x \right) \left(\sqrt{x^4 + 1} + x^2 \right)} = \frac{1}{+\infty} = 0 + 1$$

Infatti:
$$(a - b)(a + b)(a^2 + b^2) = a^4 - b^4 \Rightarrow$$

$$\left(\sqrt[4]{x^4 + 1} - x\right)\left(\sqrt[4]{x^4 + 1} + x\right)\left(\sqrt{x^4 + 1} + x^2\right) = \left(x^4 + 1\right) - x^4 = 1$$

$$\sqrt[4]{x^4 + 1} - x = \frac{1}{\left(\sqrt[4]{x^4 + 1} + x\right)\left(\sqrt{x^4 + 1} + x^2\right)}$$

$$\lim_{\mathbf{x}\to+\infty}\sqrt{\mathbf{x}}\left(\sqrt{\mathbf{x}+\mathbf{1}}-\sqrt{\mathbf{x}}\right) = \lim_{x\to+\infty}\frac{\sqrt{x}(x+1-x)}{\left(\sqrt{x}+1+\sqrt{x}\right)} = \lim_{x\to+\infty}\frac{\sqrt{x}}{\sqrt{x+1}+\sqrt{x}} = \lim_{x\to+\infty}\frac{1}{\sqrt{1+\frac{1}{x}+1}} = \frac{1}{2}$$

$$\lim_{\mathbf{x}\to\infty} \left(\frac{\mathbf{x}^3}{3\mathbf{x}^2 - 4} - \frac{\mathbf{x}^2}{3\mathbf{x} + 2} \right) = \lim_{x\to\infty} \frac{2x^3 + 4x^2}{9x^3 + 6x^2 - 12x - 8} = \lim_{x\to\infty} \frac{2x^3}{9x^3} = \frac{2}{9}$$

$$\lim_{x \to 0} \left(2\cot 2x - \cot x \right) = \lim_{x \to 0} \left(\frac{2}{tg \, 2x} - \frac{1}{tg \, x} \right) = \lim_{x \to 0} \left(\frac{1 - tg^2 \, x}{tg \, x} - \frac{1}{tg \, x} \right) = \lim_{x \to 0} \left(-tg \, x \right) = \mathbf{0}$$

$$\lim_{x \to 0+} \left(\ln x - \ln \sin 2x \right) = \lim_{x \to 0+} \ln \frac{x}{\sin 2x} = \ln \lim_{x \to 0+} \frac{x}{\sin 2x} = \ln \frac{1}{2} \lim_{x \to 0+} \frac{2x}{\sin 2x} = \ln \frac{1}{2} = -\ln 2$$

Forma indeterminata $0.\infty$

$$\lim_{x \to 0} x \cot g x = \lim_{x \to 0} \frac{x}{tg x} = 1$$

$$\lim_{\mathbf{x} \to \frac{\pi}{2}} \mathbf{tg} \mathbf{x} \left(\mathbf{1} - \sin \mathbf{x} \right) = \lim_{\mathbf{x} \to \frac{\pi}{2}} \frac{\sin x}{\cos x} \left(1 - \sin x \right) \frac{1 + \sin x}{1 + \sin x} = \lim_{\mathbf{x} \to \frac{\pi}{2}} \frac{\sin x}{\cos x} \frac{\cos^2 x}{1 + \sin x} = \lim_{\mathbf{x} \to \frac{\pi}{2}} \frac{\sin x \cos x}{1 + \sin x} = \mathbf{0}$$

$$\lim_{\mathbf{x}\to\infty} \mathbf{x} \sin \frac{1}{\mathbf{x}} = \lim_{x\to\infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \lim_{t\to0} \frac{\sin t}{t} = 1 , \frac{1}{x} = t , x\to\infty \Leftrightarrow t\to0$$

$$\lim_{x\to 0} x \sin \frac{1}{x} = \lim_{x\to 0} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \lim_{t\to \infty} \frac{\sin t}{t} = \frac{\text{quantità finita}}{\infty} = 0$$

$$\lim_{\mathbf{x} \to \frac{\pi}{4}} (\mathbf{1} - \mathbf{tg} \, \mathbf{x}) \cdot \mathbf{tg} \, \mathbf{2x} = \lim_{x \to \frac{\pi}{4}} (1 - tg \, x) \cdot \frac{2tg \, x}{(1 - tg \, x)(1 + tg \, x)} = \lim_{x \to \frac{\pi}{4}} \frac{2tg \, x}{1 + tg \, x} = \frac{2}{2} = 1$$

$$\lim_{\mathbf{x} \to \frac{\pi}{2}} \left(\cos \frac{\mathbf{x}}{2} - \sin \frac{\mathbf{x}}{2} \right) \mathbf{tg} \mathbf{x} = \lim_{t \to 0} \left[\cos \left(\frac{\pi}{4} - \frac{t}{2} \right) - \sin \left(\frac{\pi}{4} - t \right) \right] \cdot tg \left(\frac{\pi}{2} - t \right) =$$

$$= \lim_{t \to 0} \left(\frac{\sqrt{2}}{2} \cos \frac{t}{2} + \frac{\sqrt{2}}{2} \sin \frac{t}{2} - \frac{\sqrt{2}}{2} \cos \frac{t}{2} + \frac{\sqrt{2}}{2} \sin \frac{t}{2} \right) \cot g t = \lim_{t \to 0} \left(\sqrt{2} \sin \frac{t}{2} \right) \cot g t =$$

$$= \lim_{t \to 0} \sqrt{2} \sin \frac{t}{2} \cdot \frac{\cos t}{2 \sin \frac{t}{2} \cos \frac{t}{2}} = \frac{\sqrt{2} \cdot 1}{2} = \frac{\sqrt{2}}{2}$$

Si pone:
$$\begin{cases} x = \frac{\pi}{2} - t \\ t = \frac{\pi}{2} - x \end{cases} \begin{cases} x \to \frac{\pi}{2} \iff t \to 0 \\ \frac{x}{2} = \frac{\pi}{4} - \frac{t}{2} \end{cases}$$

$$\lim_{\mathbf{x}\to\mathbf{0}}\mathbf{x}\cot\mathbf{g}^{2}\mathbf{x} = \lim_{x\to\mathbf{0}}\frac{x}{tg^{2}x} = \lim_{x\to\mathbf{0}}\frac{x}{tgx}\cdot\frac{1}{tgx} = 1\cdot\frac{1}{0} = \infty$$

$$\lim_{x \to 0+} \left(\frac{1}{x} + \ln x \right) = \lim_{x \to 0+} \frac{1 + x \ln x}{x} = \lim_{x \to 0+} \frac{1}{x} \lim_{x \to 0+} \left(1 + x \ln x \right) = \lim_{x \to 0+} \frac{1}{x} \lim_{x \to 0+} \left(1 + \frac{\ln x}{\frac{1}{x}} \right) = \lim_{x \to 0+} \frac{1}{x} \cdot \left(1 + \lim_{x \to 0+} \frac{1}{x} \cdot \left(1 - \lim_{x \to 0+} \frac{1}{x} \cdot \left(1 -$$