01) Verificare se i vettori \vec{a} , \vec{b} , \vec{c} , \vec{d} sono linearmente dipendenti ed , in caso positivo , esprimere il vettore \vec{d} mediante i vettori \vec{a} , \vec{b} , \vec{c} .

$$\vec{a} = [-1, -2, 2, 1]$$
 , $\vec{b} = [0, 1, 2, 3]$, $\vec{c} = [-2, 0, 1, 0]$ $\vec{d} = [10, 7, -2, 7]$

02) Verificare se i vettori \vec{a} , \vec{b} , \vec{c} , \vec{d} sono linearmente dipendenti ed , in caso positivo , esprimere il vettore \vec{d} mediante i vettori \vec{a} , \vec{b} , \vec{c} .

$$\vec{a} = [1,2,3,4]$$
 , $\vec{b} = [-1,2,-3,3]$, $\vec{c} = [-3,-2,-1,0]$ $\vec{d} = [10,8,-10,-6]$

03) Verificare se i vettori \vec{a} , \vec{b} , \vec{c} , \vec{d} sono linearmente dipendenti ed , in caso positivo , esprimere il vettore \vec{d} mediante i vettori \vec{a} , \vec{b} , \vec{c} .

$$\vec{a} = [4,3,2,1]$$
 , $\vec{b} = [3,-3,2,-1]$, $\vec{c} = [-1,0,1,2]$ $\vec{d} = [-2,-21,-7,-17]$

04) Verificare se i vettori \vec{a} , \vec{b} , \vec{c} , \vec{d} sono linearmente dipendenti ed , in caso positivo , esprimere il vettore \vec{d} mediante i vettori \vec{a} , \vec{b} , \vec{c} .

$$\vec{a} = [-4,3,-2,1]$$
 , $\vec{b} = [-3,3,2,4]$, $\vec{c} = [-1,-2,-3,-4]$ $\vec{d} = [9,17,43,47]$

05) Determinare per quali valori dei parametri a, b il vettore $\vec{u}=(a,-5,3b)$ è combinazione lineare dei tre vettori $\vec{u}_1=(2,1,-1)$, $\vec{u}_2=(1,-2,0)$, $\vec{u}_3=(5,0,-2)$.

$$[2a + 15b - 5 = 0]$$

06) Verificare che sono linearmente dipendenti i vettori proposti nei seguenti casi :

a)
$$\vec{a}_1 = \begin{bmatrix} 3 \\ 1 \\ -5 \\ 2 \end{bmatrix}$$
 , $\vec{a}_2 = \begin{bmatrix} 5 \\ 5 \\ 3 \\ 8 \end{bmatrix}$, $\vec{a}_3 = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 3 \end{bmatrix}$

b)
$$\vec{v}_1 = (2,3,-2,5)$$
 , $\vec{v}_2 = (1,-1,3,2)$, $\vec{v}_3 = (14,6,10,32)$

c)
$$\vec{v}_1 = (2,-1,3)$$
 , $\vec{v}_2 = (0,1,3)$, $\vec{v}_3 = (2,0,6)$

d)
$$\vec{\mathbf{a}}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
 , $\vec{\mathbf{a}}_2 = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$, $\vec{\mathbf{a}}_2 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$

e)
$$\vec{a}_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \\ 4 \end{bmatrix}$$
 , $\vec{a}_2 = \begin{bmatrix} 5 \\ 2 \\ 3 \\ 7 \end{bmatrix}$, $\vec{a}_3 = \begin{bmatrix} 4 \\ 2 \\ 2 \\ 6 \end{bmatrix}$

f)
$$\vec{a} = (-1,1,2,-4)$$
 , $\vec{b} = (-5,7,6,-6)$, $\vec{c} = (1,-2,0,-3)$

07) Stabilire se sono linearmente indipendenti i vettori proposti nei seguenti casi :

a)
$$\vec{a} = (3, -2, 1)$$
 , $\vec{b} = (3, -2, 1)$, $\vec{c} = (2, 0, 4)$

08) Dati i vettori
$$\vec{v}_1 = (1,0,3)$$
 , $\vec{v}_2 = \left(2, -\frac{1}{2}, 5\right)$, $\vec{v}_3 = \left(4, -\frac{3}{2}, 9\right)$ verificare che sono

linearmente dipendenti e trovare l'espressione della loro combinazione lineare.

$$[2\vec{v}_1 - 3\vec{v}_2 + \vec{v}_3 = \vec{o},]$$

O9) Verificare che il vettore
$$\vec{v}=(1,9,-10)$$
 è combinazione lineare dei vettori $\vec{v}_1=(2,2,-1)$, $\vec{v}_2=(-2,2,-3)$, $\vec{v}_3=(1,1,-1)$. f.p. PAG 31

9a) Per quale valore del parametro k il vettore
$$\vec{a}=(k,3,9,5)$$
 è combinazione lineare dei vettori $\vec{a}_1=(1,1,1,2)$, $\vec{a}_2=(-3,2,-1,-1)$, $\vec{a}_3=(1,-1,3,1)$. [$k=-1$, f.p. PAG 33]

9b) Dire se i vettori $\vec{a} = [1;-2;3]$, $\vec{b} = [-1;2;-4]$, $\vec{c} = [7;-14;25]$ sono linearmente dipendenti oppure linearmente indipendenti e , ove possibile , esprimere \vec{c} come combinazione lineare dei vettori \vec{a} e \vec{b} .

Date le seguenti terne di vettori di R^2 , esprimere il vettore \vec{c} come combinazione lineare dei vettori \vec{a} e \vec{b}

10
$$\vec{a} = (-5; 1); \quad \vec{b} = (8; 2); \quad \vec{c} = (2; 0).$$

$$\overrightarrow{a} = (-5; -1); \quad \overrightarrow{b} = (8; 2); \quad \overrightarrow{c} = (-3; -1).$$

$$\vec{a} = (4; 0); \quad \vec{b} = (1; -4); \quad \vec{c} = (4; -16).$$

$$\overrightarrow{a} = (-5; 2); \quad \overrightarrow{b} = (6; -1); \quad \overrightarrow{c} = (13; -1).$$

$$\overrightarrow{a} = (-2; 5); \quad \overrightarrow{b} = (1; -2); \quad \overrightarrow{c} = (-1; 4).$$
 $[2\overrightarrow{a} + 3\overrightarrow{b}]$

$$\overrightarrow{a} = (-1; 0); \quad \overrightarrow{b} = (7; -5); \quad \overrightarrow{c} = (-2; 5).$$

15
$$\overrightarrow{a} = (-1; 0); \quad \overrightarrow{b} = (7; -5); \quad \overrightarrow{c} = (-2; 5).$$
 [-5 $\overrightarrow{a} - \overrightarrow{b}$]
16 $\overrightarrow{a} = (0; 3); \quad \overrightarrow{b} = (-3; -5); \quad \overrightarrow{c} = (-6; 2).$ [4 $\overrightarrow{a} + 2\overrightarrow{b}$]

Assegnati i vettori

$$\vec{u} = \begin{vmatrix} 1 \\ 2 \\ -2 \end{vmatrix} \quad \vec{v} = \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} \quad \vec{w} = \begin{vmatrix} 2 \\ 2 \\ 1 \end{vmatrix}$$

N° 01A

trovare le loro combinazioni lineari:

N° 01

a.
$$3\vec{u} + 2\vec{v} - \vec{w}$$

b.
$$\vec{u} + \vec{v} - \vec{w}$$

b.
$$\vec{u} + \vec{v} - \vec{w}$$

c. $4\vec{u} - 2\vec{v} + 2\vec{w}$

d.
$$5\vec{u} - 3\vec{v} + 4\vec{w}$$

N° 01D

Esprimere, se possibile, il vettore $\vec{v}(4;10)$ come combinazione lineare dei vettori $\vec{u}(1;-2)$ e $\vec{z}(3;3)$.

N° 01C

N° 01B

Assegnati i vettori $\vec{u}(3;-2)$ e $\vec{v}(1;-3)$, individuare il vettore \vec{w} mediante la combinazione lineare $\vec{w} = 3\vec{v} - \vec{u}$. **R.** (0;–7)

Trovare la combinazione lineare dei vettori $\vec{u}(4;1)$ e $\vec{v}(-2;5)$ che consenta di individuare il vettore $\vec{w}(8;13)$.

R.
$$\vec{w} = 3\vec{u} + 2\vec{v}$$

Nel piano ortonormale riferito alla base \vec{i}, \vec{j} si considerino i vettori $\vec{u}(2;-3), \vec{v}(1;2), \vec{w}(1;-12)$. Dopo aver dimostrato che sono a due a due linearmente indipendenti, esprimere \vec{w} come combinazione lineare di $\vec{u} \in \vec{v}$.

Date le seguenti quaterne di vettori di \mathbb{R}^3 , esprimere il vettore \overrightarrow{d} come combinazione lineare di \overrightarrow{a} , \overrightarrow{b} e \overrightarrow{c} , determinando i coefficienti della combinazione lineare:

$$\overrightarrow{a} = (1; -2; 3); \quad \overrightarrow{b} = (1; 1; 2); \quad \overrightarrow{c} = (3; -2; -2); \quad \overrightarrow{d} = (0; -2; -9).$$

$$\overrightarrow{a} = (0; 4; -1); \quad \overrightarrow{b} = (3; 4; 4); \quad \overrightarrow{c} = (3; 3; 0); \quad \overrightarrow{d} = (9; 7; 9). \quad [-1, 2, 1]$$

$$\overrightarrow{d} = (0; 4; -1); \quad \overrightarrow{b} = (3; 4; 4); \quad \overrightarrow{c} = (3; 3; 0); \quad \overrightarrow{d} = (-3; 1; 16). \ [0, 4, -5]$$

$$\overrightarrow{a} = (4 \ ; \ 0 \ ; \ -2); \quad \overrightarrow{b} = (-2 \ ; \ 3 \ ; \ 4); \quad \overrightarrow{c} = (1 \ ; \ -2 \ ; \ -2); \quad \overrightarrow{d} = (0 \ ; \ 11 \ ; \ 12).$$

$$\overrightarrow{a} = (4; 0; -2); \quad \overrightarrow{b} = (-2; 3; 4); \quad \overrightarrow{c} = (1; -2; -2); \quad \overrightarrow{d} = (-6; -2; 0).$$

$$[-2, -2, -2]$$

$$\overrightarrow{a} = (4 ; 0 ; -2); \quad \overrightarrow{b} = (-2 ; 3 ; 4); \quad \overrightarrow{c} = (1 ; -2 ; -2); \quad \overrightarrow{d} = (-11 ; 12 ; 16).$$

$$[-1, 2, -3]$$

Dati i vettori \mathbf{X} e \mathbf{Y} determinare i vettori $\mathbf{X} + \mathbf{Y}$, $\mathbf{X} - \mathbf{Y}$, $2\mathbf{X} - 3\mathbf{Y}$

1.
$$\mathbf{X}(2, 3)$$

2.
$$\mathbf{X}(-1, 2)$$

$$Y(1, -1)$$

3.
$$\mathbf{X}(-5, 4)$$

$$\mathbf{Y}(2, -3)$$

4.
$$\mathbf{X}\left(\frac{2}{3}, \frac{4}{5}\right)$$

$$\mathbf{Y}\left(7,\frac{4}{3}\right)$$

5.
$$\mathbf{X}\left(8, \frac{1}{2}\right)$$

$$\mathbf{Y}\left(-1,\frac{3}{2}\right)$$

6.
$$\mathbf{X}(1, 3, -1)$$

$$\mathbf{Y}(2, -1, -1)$$

7.
$$\mathbf{X}(2, 4, 1)$$

$$\mathbf{Y}\left(\frac{1}{2},\,2,\,2\right)$$

8.
$$\mathbf{X}(7, -3, 4)$$

$$\mathbf{Y}(7, 2, -3)$$

9.
$$\mathbf{X}\left(4, -\frac{1}{2}, \frac{3}{2}\right)$$

$$\mathbf{Y}\left(2,\frac{1}{2},\frac{3}{2}\right)$$

10.
$$\mathbf{X}\left(-1, 4, -\frac{3}{2}\right)$$

$$\mathbf{Y}(-1, -3, 2)$$

Dati i vettori \mathbf{V}_1 e \mathbf{V}_2 rappresentarli graficamente e rappresentare anche $\mathbf{V}_1+\mathbf{V}_2$, $\mathbf{V}_1-\mathbf{V}_2$, $3\mathbf{V}_1-2\mathbf{V}_2$

14.
$$V_1(3, 1)$$

$$\mathbf{V}_2(1, 3)$$

15.
$$\mathbf{V}_1(-1, -2)$$

$$\mathbf{V}_2(1, 5)$$

16.
$$V_1(4, -3)$$

$$\mathbf{V}_2(-1, 2)$$

17.
$$\mathbf{V}_1(-2, -1)$$

$$\mathbf{V}_2(-2, 2)$$

18.
$$V_1(4, 4)$$

$$V_2(4, -2)$$

19.
$$V_1(3, -1)$$

$$\mathbf{V}_2(-3, -1)$$

20.
$$\mathbf{V}_1(1, 5)$$

$$V_2(-3, -3)$$

Dati i vettori ${f X}$ e ${f Y}$ ed i numeri reali l ed m si determini il vettore ${f Z}=l~{f X}+m{f Y}$

29.
$$\mathbf{X}(2, 1)$$
 $\mathbf{Y}(-3, 2)$ $l = 2$ $m = -1$

$$Y(-3, 2)$$

$$l=2$$

$$m = -1$$

30.
$$\mathbf{X}(5, -1)$$
 $\mathbf{Y}(2, -3)$ $l = -1$ $m = 1$

$$\mathbf{Y}(2, -3)$$

$$l = -1$$

$$m = 1$$

31.
$$\mathbf{X}(3, -1)$$
 $\mathbf{Y}(2, 1)$ $l = 3$ $m = -3$

$$\mathbf{Y}(2, 1)$$

$$l = 3$$

$$m = -3$$

32.
$$\mathbf{X}(2,5)$$
 $\mathbf{Y}(-2,4)$ $l=2$ $m=-2$

$$Y(-2, 4)$$

$$l=2$$

$$m = -2$$

33.
$$\mathbf{X}(1, -1, 2)$$
 $\mathbf{Y}(-1, 2, 2)$ $l = -1$ $m = 3$

$$\mathbf{Y}(-1, 2, 2)$$

$$m = 3$$

34.
$$\mathbf{X}(2, 3, -1)$$

34.
$$\mathbf{X}(2, 3, -1)$$
 $\mathbf{Y}(-1, -2, 4)$ $l = -2$ $m = 4$

$$m=4$$

Verificare se i seguenti vettori sono linearmente indipendenti

48.
$$\mathbf{V}_1(6, 2, 3, 4)$$

$$\mathbf{V}_2(0, 5, -3, 1)$$

$$\mathbf{V}_2(0, 5, -3, 1)$$
 $\mathbf{V}_3(0, 0, 7, -2)$

49.
$$\mathbf{V}_1(1, -2, 1)$$

$$\mathbf{V}_2(2, 1, -1)$$

$$\mathbf{V}_3(7, -4, 1)$$

50.
$$\mathbf{V}_1(4, -12)$$

$$\mathbf{V}_2(-6, 18)$$

51. $V_1(-1, -2, 2)$

 $\mathbf{V}_2(4, 8, -8)$

[no]

52. $\mathbf{V}_1(1, 2, 3)$

 $\mathbf{V}_2(-2, 0, 3)$

 $\mathbf{V}_3(13, 6, -6)$

[no]

53. $\mathbf{V}_1(2, 1, 2)$

 $\mathbf{V}_2(1, -2, 0)$

 $\mathbf{V}_3(6, 7, 8)$

[sì]

- **35.** Scrivere il vettore $\mathbf{V}(2,3)$ come combinazione lineare di $\mathbf{V}_1(1,1)$ e $\mathbf{V}_2(3,-1)$ $\left[\mathbf{V} = \frac{11}{4}\mathbf{V}_1 \frac{1}{4}\mathbf{V}_2\right]$
- **36.** Scrivere il vettore $\mathbf{V}(-3, -1)$ come combinazione lineare di $\mathbf{V}_1(-5, -1)$ e $\mathbf{V}_2(8, 2)$ [$\mathbf{V} = -\mathbf{V}_1 \mathbf{V}_2$]
- **37.** Scrivere il vettore $\mathbf{V}(-1, 4)$ come combinazione lineare di $\mathbf{V}_1(-2, 5)$ e $\mathbf{V}_2(1, -2)$ [$\mathbf{V} = 2\mathbf{V}_1 + 3\mathbf{V}_2$]
- **38.** Scrivere il vettore $\mathbf{V}(12, -11)$ come combinazione lineare di $\mathbf{V}_1(2, -1)$ e $\mathbf{V}_2(-3, 4)$ $[\mathbf{V} = 3\mathbf{V}_1 2\mathbf{V}_2]$
- **39.** Scrivere il vettore $\mathbf{V}(-11, -2)$ come combinazione lineare di $\mathbf{V}_1(-1, 3)$ e $\mathbf{V}_2(2, 1)$ $[\mathbf{V} = \mathbf{V}_1 5\mathbf{V}_2]$
- **40.** Scrivere il vettore $\mathbf{V}(-11, 9)$ come combinazione lineare di $\mathbf{V}_1(-3, 2)$ e $\mathbf{V}_2(1, -1)$ $[\mathbf{V} = 2\mathbf{V}_1 5\mathbf{V}_2]$
- **41.** Scrivere il vettore $\mathbf{V}(3, 8, 14)$ come combinazione lineare di $\mathbf{V}_1(-1, 0, 2)$ e $\mathbf{V}_2(1, 2, 3)$ $[\mathbf{V} = \mathbf{V}_1 + 4\mathbf{V}_2]$
- **42.** Scrivere il vettore $\mathbf{V}(5,-1,-7)$ come combinazione lineare di $\mathbf{V}_1(2,1,-1)$ e $\mathbf{V}_2(-1,3,5)$ [$\mathbf{V}=2\mathbf{V}_1-\mathbf{V}_2$]
- **43.** Scrivere il vettore $\mathbf{V}(15, -2, -7)$ come combinazione lineare di $\mathbf{V}_1(1, -2, 3)$ e $\mathbf{V}_2(-3, -2, 4)$ [$\mathbf{V} = 3\mathbf{V}_1 4\mathbf{V}_2$]
- **44.** Scrivere il vettore $\mathbf{V}(-2,0,10)$ come combinazione lineare di $\mathbf{V}_1(-3,2,-1)$ e $\mathbf{V}_2(1,-1,3)$ [$\mathbf{V}=2\mathbf{V}_1+4\mathbf{V}_2$]
- **45.** Scrivere il vettore $\mathbf{V}(8,-1,19)$ come combinazione lineare di $\mathbf{V}_1(1,3,-2)$ e $\mathbf{V}_2(1,-2,5)$ [$\mathbf{V}=3\mathbf{V}_1+5\mathbf{V}_2$]
- **46.** Determinare il valore del parametro t per il quale il vettore $\mathbf{V}(1, t, 5)$ è una combinazione lineare di $\mathbf{V}_1(1, -3, 2)$ e $\mathbf{V}_2(2, -1, 1)$ [-8]
- **47.** Determinare i valori dei parametri l, m, n affinché la matrice $M = \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$ sia una combinazione lineare di $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix}$ [3, -2, -1]

- **54.** Verificare che i vettori $\mathbf{X}(4, -2)$ e $\mathbf{Y}(-7, -6)$ sono linearmente indipendenti ed esprimere il vettore $\mathbf{Z}(-2, -18)$ come combinazione lineare di \mathbf{X} e \mathbf{Y} [$\mathbf{Z} = 3\mathbf{X} + 2\mathbf{Y}$]
- **55.** Verificare che i vettori $\mathbf{X}(5, 2, -2)$ e $\mathbf{Y}(1, 2, -3)$ sono linearmente indipendenti ed esprimere il vettore $\mathbf{Z}(-2, 4, -7)$ come combinazione lineare di \mathbf{X} e \mathbf{Y} $[\mathbf{Z} = -\mathbf{X} + 3\mathbf{Y}]$
- **56.** Determinare il valore di $k \in \mathbb{R}$ affinché i vettori $\mathbf{V}_1(1, 0, -1)$, $\mathbf{V}_2(k, 1 k, 2k)$ e $\mathbf{V}_3(0, 3, 1)$ siano linearmente dipendenti $\left[k = \frac{1}{10}\right]$
- **57.** Verificare che le matrici $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ e $\mathbf{C} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ sono linearmente indipendenti
- **58.** Verificare che i vettori $V_1(1, 2, 3)$, $V_2(0, 1, 2)$ e $V_3(0, 0, 1)$ generano \mathbb{R}^3
- **59.** Verificare che i vettori $\mathbf{V}_1(a, 0, 0)$, $\mathbf{V}_2(0, b, 0)$ e $\mathbf{V}_3(0, 0, c)$, con a b e c costanti non nulli, generano \mathbb{R}^3

Verificare se i seguenti vettori costituiscono una base per lo spazio vettoriale \mathbb{R}^3

60.
$$\mathbf{V}_1(1, -1, 5)$$
 $\mathbf{V}_2(1, 1, 1)$ [no]

61.
$$\mathbf{V}_1(1, 1, 1)$$
 $\mathbf{V}_2(2, -1, 1)$ $\mathbf{V}_3(1, 2, 3)$

62.
$$\mathbf{V}_1(2, 4, -3)$$
 $\mathbf{V}_2(0, 1, 1)$ $\mathbf{V}_3(0, 1, -1)$ [Si]

63.
$$\mathbf{V}_1(1, 0, -1)$$
 $\mathbf{V}_2(3, -1, 0)$ $\mathbf{V}_3(1, 2, 3)$ $\mathbf{V}_4(5, 3, -1)$ [si]

- **64.** Se \mathbf{V}_1 , \mathbf{V}_2 , \mathbf{V}_3 costituiscono una base per lo spazio vettoriale \mathbb{R}^3 , provare che l'insieme di vettori $\mathbf{n}_1 = \mathbf{V}_1 + \mathbf{V}_2$, $\mathbf{n}_2 = \mathbf{V}_2 + \mathbf{V}_3$, $\mathbf{n}_3 = \mathbf{V}_1 + \mathbf{V}_3$ costituiscono base di \mathbb{R}^3
- **65.** Dato lo spazio vettoriale generato dai vettori $\mathbf{V}_1(2, 1, 3, 1)$, $\mathbf{V}_2(1, 2, 0, 1)$, $\mathbf{V}_3(-1, 1, -3, 0)$ determinare una sua base e la dimensione $[\dim = 2, \ \text{base} : \mathbf{V}_1 \ \text{e} \ \mathbf{V}_2]$
- **66.** Stabilire per quali valori del parametro k i vettori $\mathbf{V}_1(3,\,1,\,2), \ \mathbf{V}_2(0,\,1,\,-1), \ \mathbf{V}_3(1,\,1-k,\,0)$ costituiscono una base di \mathbb{R}^3 [$k\neq 0$]